HeatMechPDE
Heat conduction - mechanics coupling¶
This coupling is modelled as a pure forward coupling from a heat conduction simulation, e.g. performed in sequence step 1, to a computational mechanics using the temperature distribution and consider the thermal stress as a right hand side load.
Coupling conditions¶
The thermal stain \mathbf{s}_\mathrm{th} is model as
with a given reference temperatur T_\mathrm{ref} and the thermal expansion tensor of rank 2
In doing so, the mechanical PDE for the displacement \mathbf{u} changes to
Analysis Types¶
Depending on the temporal setting, the coupled PDEs can be solved for the following analysis types:
- Static case (\partial / \partial t = 0)
- Transient case (\partial / \partial t (\cdot) \neq 0)
Single PDEs¶
As described, a typical application is the computation of a temperature distribution in sequence step 1 and then in step 2 the deformed mechanical structure, e.g
<sequenceStep index="1">
<analysis>
<static/>
</analysis>
<pdeList>
<heatConduction>
<regionList>
<region name="S_beam"/>
</regionList>
<bcsAndLoads>
<temperature name="L_top" value="30"/>
<temperature name="L_bottom" value="20"/>
</bcsAndLoads>
....
</heatConduction>
</pdeList>
</sequenceStep>
<sequenceStep index="2">
<analysis>
<static/>
</analysis>
<pdeList>
<mechanic subType="planeStress">
<regionList>
<region name="S_beam"/>
</regionList>
<bcsAndLoads>
<fix name="L_fix">
<comp dof="x"/>
<comp dof="y"/>
</fix>
<thermalStrain name="S_beam">
<sequenceStep index="1">
<quantity name="heatTemperature" pdeName="heatConduction"/>
<timeFreqMapping>
<constant step="1"/>
</timeFreqMapping>
</sequenceStep>
</thermalStrain>
</bcsAndLoads>
....
</mechanic>
</pdeList>
</sequenceStep>
Defining the coupling¶
- Coupling terms: Within the mechanical PDE we assume to have on the computational domain a temperature distribution, e.g. from a previous sequence step (see above), or which is provided by the input file and then is defined by
<bcsAndLoads>
...
<thermalStrain name="Vol_bpsg_B1">
<grid>
<defaultGrid quantity="heatTemperature" dependtype="GENERAL" sequenceStep="2">
<globalFactor>1</globalFactor>
</defaultGrid>
</grid>
</thermalStrain>
...
</bcsAndLoads>
Material and postprocessing results¶
The thermal expansion tensor of rank 2 is defined within the material file, e.g. for an isotropic material as follows
<material name="alu">
<mechanical>
<density>2700.0</density>
...
<thermalExpanison>
<isotropic>
<real>22e-6</real>
</isotropic>
<refTemperature>
<real>25</real>
</refTemperature>
</thermalExpanison>
...
</mechanical>
<storeResults>
<storeResults>
...
<elemResult type="mechThermalStress">
<allRegions/>
</elemResult>
<elemResult type="mechThermalStrain">
<allRegions/>
</elemResult>
...
</storeResults>