Skip to content

Electrostatic PDE

Governing Equations

The governing equation can easily be derived by considering Faraday's law in its stationary form (no time-derivative of the magnetic flux density) and law of Gauss. Introducing the electric potential \mathbf{E} = -\nabla{\phi}, we obatain \begin{equation} -\nabla \cdot {\mathbf{\epsilon}\nabla{\phi}} = 0, \end{equation} where \epsilon is the permittivity. The boundary conditions can be given as \begin{equation} \phi = \phi_{\textrm e} \qquad \textrm{on }\Gamma_{\textrm e}, \end{equation}

\begin{equation} \mathbf{D}\cdot\mathbf{n} = -\mathbf{\epsilon}\nabla{\phi} \cdot\mathbf{n} = q_{\textrm s} \qquad \textrm{on }\Gamma_{\textrm n}, \end{equation} with \phi_{\textrm e} as the Dirichlet (essential) BC-value, \Gamma_{\textrm e} the essential boundary, \mathbf{n} the normal vector on Neumann (natural) boundary \Gamma_{\textrm n} and q_{\textrm s} the surface charge density.

Boundary conditions

As described above, there are two types of BC's, Neumann and Dirichlet. However, since openCFS is physics-based, there are several variations and combinations of these. They can be defined in the simulation-xml file in the BC-section

          <potential name="" value=""/>
          <ground name=""/>
          <charge name="" value=""/>
          <chargeDensity name="" value=""/>
          <fluxDensity name=""/>
          <fieldParallel name=""/>
  • Potential <potential name="" value=""/>: Inhomogeneous Dirichlet value \phi_{\textrm{e}}=\textrm{value}
  • Ground <potential name=""/>: Homogeneous Dirichlet value \phi_{\textrm{e}}=0
  • Charge <charge name="" value=""/>: Surface charge \int_{\textrm{A}}q_s\, ds=\textrm{value} (Neumann-type BC), where ds is the infinitesimal surface element
  • Charge density <chargeDensity name="" value=""/>: Surface charge density q_s=\textrm{value} (Neumann-type BC)
  • Flux density <fluxDensity name="" value=""/>: Defines normal component of dielectric displacement \mathbf{D}\cdot \mathbf{n}=\textrm{value} (similar to a surface charge density)
  • Field parallel <fieldParallel name=""/>: \mathbf{D}\cdot \mathbf{n}=0 on the specified surface


In general, the permittivity is a rank-2 tensor for anisotropic materials, and the 'total' permittivity can be defined via the relative permittivity \epsilon_{\textrm{r}} as \begin{equation} \epsilon=\epsilon_{\textrm{0}} \epsilon_{\textrm{r}}. \end{equation} It can be specified in the material-xml file e.g. for polyethylene either by defining an insotropic permittivity and/or a tensorial value for the anisotropic version

  <material name="polyethylene">
           <real> 8.85419E-12 </real>
        <tensor dim1="3" dim2="3">
            1.99200E-11 0.00000E+00 0.00000E+00
            0.00000E+00 1.99200E-11 0.00000E+00
            0.00000E+00 0.00000E+00 1.99200E-11

Analysis Types

Since in general we are dealing with a time-independent PDE, we just have a static analysis:

  • Static:

Postprocessing results (hysteresis excluded)

  • Electric Potential (node result, primary solution)
<nodeResult type="elecPotential">
  • Electric Field Intensity (element result) \begin{equation} \mathbf E = -\nabla \phi \end{equation}
<elemResult type="elecFieldIntensity">
  • Electric Energy Density (element result) \begin{equation} e = \epsilon \mathbf{E} \cdot \mathbf{E} \end{equation}
<elemResult type="elecEnergyDensity">
  • Charge Density (element result) \begin{equation} q_{{s}} \end{equation}
<elemResult type="elecChargeDensity">
  • Electric Charge (surface region result) \begin{equation} Q = \int_{{A}} q_{{s}} ds \end{equation}
<surfRegionResult type="elecCharge">
  • Electric Energy (region result) \begin{equation} E = \int_{{\Omega}} \mathbf{E} \cdot \mathbf{E} \, dV \end{equation}
<regionResult type="elecEnergy">